Analysis of The Effectiveness and Accuracy of A Production System Based on Demand Forecasting in Reducing Excess Stock

Authors

  • M. Riyan Dirgantara Universitas Islam Negeri Sumatera Utara, Indonesia
  • Tri Inda Fadhila Rahma Universitas Islam Negeri Sumatera Utara, Indonesia
  • Juliana Nasution Universitas Islam Negeri Sumatera Utara, Indonesia

DOI:

https://doi.org/10.54437/urwatulwutsqo.v14i3.2601

Keywords:

Demand Forecasting, Moving Average, Weighted Moving Average, Inventory Management

Abstract

This study analyzes the effectiveness and accuracy of a demand forecasting based production system to reduce excess stock at the Ayam Geprek Bu Novi culinary business on Jl. Bukit Barisan. Using a quantitative approach, the research applies time series forecasting techniques consisting of Moving Average (MA), Weighted Moving Average (WMA), and Exponential Smoothing (ES). Weekly demand data from February to May 2025 were collected and analyzed to measure prediction accuracy and to evaluate the impact on raw material efficiency. The results show that the 3 week WMA method provides the highest responsiveness to rising demand trends and produces forecasts that are closest to actual sales. In comparison, the 6 week MA method and ES with alpha 0.2 provide more stable performance when demand fluctuations are relatively low. The application of these simple Excel based forecasting models enables micro, small, and medium culinary enterprises (MSMEs) to align production more accurately with actual demand, thereby reducing overstock and improving operational efficiency. This study demonstrates that data driven decision making using easy to use forecasting tools can support MSMEs in optimizing inventory control and maintaining production sustainability. The findings offer practical insights for small fast food businesses that need adaptive inventory management solutions without complex systems or high implementation costs.

Downloads

Download data is not yet available.

References

Abbasimehr, H., Shabani, M., and Yousefi, M. (2020). An optimized model using LSTM network for demand forecasting. Computers and Industrial Engineering, 143.

Chatfield, C. (2004). The analysis of time series: An introduction. 6th ed. Chapman and Hall CRC.

Chen, Y., Hua, Z., and Fu, Y. (2024). Research on vegetable product pricing and replenishment decision based on linear regression and ARIMA model. Highlights in Science, Engineering and Technology, 82, 316-322.

Chopra, S., and Meindl, P. (2016). Supply chain management: Strategy, planning, and operation. 6th ed. Pearson.

Damayanti, R. (2019). Implementasi ARIMA pada peramalan permintaan produk kuliner. Jurnal Matematika dan Terapan, 7(2), 72-73.

Fitri, N., Kamilah, K., and Rahma, T. I. F. (2022). Analisis faktor faktor yang mempengaruhi permintaan konsumen depot air minum Semuril. SIBATIK Journal, 1(3), 151-162. https://doi.org/10.54443/sibatik.v1i3.21

GAPMMI. (2024). Outlook industri makanan dan minuman Indonesia tahun 2024. Gabungan Pengusaha Makanan dan Minuman Indonesia.

Gardner, E. S. (2006). Exponential smoothing: The state of the art. International Journal of Forecasting, 22(4), 637-666.

Gea, A., Sinaga, R., and P. (2023). Analisis peramalan permintaan produk UMKM menggunakan metode moving average. Jurnal Ilmiah Manajemen Bisnis, 18(1), 44-52.

Golabek, A., Kowalski, P., and Nowak, D. (2020). Demand forecasting using long short term memory neural networks in e grocery FMCG. FMCG Data Journal.

Heizer, J., Render, B., and Munson, C. (2018). Operations management. 12th ed. Pearson.

Heizer, J., Render, B., Kurnia, P. H., Saraswati, R., and Wijaya, D. (2014). Manajemen Keberlangsungan dan Rantai Pasokan. Universitas Indonesia Library.

Hyndman, R. J., and Athanasopoulos, G. (2021). Forecasting: Principles and practice. 3rd ed. OTexts.

Indonesia, C. (2023). Pasar makanan cepat saji RI capai USD 55.25 miliar. CNBC Indonesia.

Juarsa, H., Putra, F., and Wibowo, A. (2024). Penerapan smoothing eksponensial dalam peramalan penjualan makanan cepat saji. Jurnal Logistik dan Rantai Pasok Indonesia, 12(2), 97-105.

Kompasiana. (2024). Fenomena ayam geprek dan strategi bertahan di pasar kuliner. Kompasiana.

Kurumatani, K. (2020). Time series forecasting of agricultural product prices based on recurrent neural networks. SN Applied Sciences, 2. https://doi.org/10.1007/s42452-020-03225-9

Li, J. (2023). Automatic pricing and replenishment decision analysis of vegetable products based on ARIMA optimization model. Agricultural and Forestry Economics and Management, 6, 64-72. https://doi.org/10.23977/agrfem.2023.060310

Makridakis, S., Wheelwright, S. C., and Hyndman, R. J. (1998). Forecasting: Methods and applications. 3rd ed. Wiley.

Ma, M. (2024). Automatic pricing and replenishment strategies for vegetable products based on data analysis and nonlinear programming.

Mencu, Marconi, M. (2021). Comparing Prophet and deep learning to ARIMA in forecasting wholesale food prices.

Nguyen, H. D., Tran, K. P., Thomassey, S., and Hamad, M. (2021). Forecasting and anomaly detection using LSTM and autoencoder techniques with applications in supply chain management. International Journal of Information Management, 57, 102282.

Nugroho, A., and Putri, D. (2021). Analisis efektivitas peramalan produksi UMKM makanan tradisional. Jurnal Ekonomi dan Kewirausahaan, 15(3), 115-117.

Nur, A. B. R., and D. G. (2022). Analisis sistem perencanaan sumber daya manusia pada Dinas Kesehatan Kabupaten Deli Serdang. Jurnal Mahasiswa, 4(4), 460-468. https://ejurnal.provisi.ac.id/index.php/jurnalmahasiswa/article/view/472

Payla, D., and Nurhaliza, F. (2024). Peramalan penjualan ayam geprek menggunakan metode exponential smoothing. Jurnal Ilmu Komputer dan Bisnis, 9(2), 88-95.

Phumchusri, N., and Sirimak, W. (2024). Time series and machine learning hybrid models for food condiment demand forecasting. International Journal of Machine Learning, 14(1), 6. https://doi.org/10.18178/ijml.2024.14.1.1149

Rahma, A., and Aslami, N. (2022). Analisis tingkat pemahaman masyarakat terhadap sistem pemasaran syariah pada PT Takaful Keluarga. Transformasi Manageria, 2(2).

Ren, R. (2024). Vegetable stocking and pricing model based on time series forecasting and non linear programming. Journal of Education, Humanities and Social Sciences, 25(13).

Rosni, N., and Othman, M. (2022). Time series modelling of food security inflation in Malaysia using ARIMA. University Journal of Economics.

Sari, P., and Ramadhan, D. (2022). Forecasting permintaan ayam geprek menggunakan metode time series. Jurnal Statistika dan Bisnis, 10(1), 33-41.

Stevenson, W. J. (2020). Operations management. 13th ed. McGraw Hill.

Sun, F., Meng, X., Zhang, Y., Wang, Y., Jiang, H., and Liu, P. (2023). Agricultural product price forecasting methods: A review. Agriculture, 13(9), 1671. https://doi.org/10.3390/agriculture13091671

Tanjung, R. A., Nurbaiti, and Aslami, N. (2023). Supply chain management marketing strategy in increasing the sales volume. Almana, 7(1), 115-124. https://doi.org/10.36555/almana.v7i1.2120

Wang, L., Chen, Q., and Li, F. (2021). Application of ARIMA and LSTM to predict order demand. Industrial Electronics Journal.

Yin, R. K. (2018). Case study research and applications: Design and methods. 6th ed. Sage.

Downloads

Published

2025-11-17

How to Cite

Dirgantara, M. R., Rahma, T. I. F. ., & Nasution, J. . (2025). Analysis of The Effectiveness and Accuracy of A Production System Based on Demand Forecasting in Reducing Excess Stock . Urwatul Wutsqo: Jurnal Studi Kependidikan Dan Keislaman, 14(3), 1294–1308. https://doi.org/10.54437/urwatulwutsqo.v14i3.2601